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- Outline

>Introduction to large eddy simulations (LES)

»Key pacing items enabling LES with high-order adaptive
methods
J = High-order methods
= High-order mesh generation
= SGS models

>Sample demonstrations
»Conclusions




- Introduction

>Approaches to compute turbulent flows
= RANS: model all scales

= LES: resolve large scales while modeling small scales

= DNS: resolve all scales
>What Is LES

= Partition all scales into large scales and small sub-grid scales

with a low pass filter with width A
= Solve the filtered Navier-Stokes equations
| with a SGS closure model

’ = A compromise between RANS and DNS
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v LES —the Challenges

> How to choose the filter width A

>How to resolve the disparate length and time scales in the turbulent
flow field

>How to handle complex geometries
>How to resolve very small turbulence scales in the boundary layer

> Discontinuity capturing
~Parallel performance on extreme
scale computers ok

> Post-processing and visualization
of large data sets
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1 Key Pacing Items in LES

»High-order methods capable of handling unstructured
meshes to deal with complex geometry

»High-order meshes resolving the geometry and viscous
boundary layers

= Coarse meshes (because internal degrees of freedom are
added)

>Quality of SGS models

>Wall models to decrease the number of cells in the
4 boundary layer




High order methods




1 High-Order CFD Methods Needed

>All of the challenges demand more accurate, efficient and
scalable design tools in CFD Error o h”?
= Better engine simulation tools "
= Better design tools for high-lift configurations
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3 Popular High-Order Methods

>Compact difference method
»>Optimized difference method

»>ENO/WENO methods

>MUSCL, PPM and K-exact FV
>Residual distribution methods

(>
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Discontinuous Galerkin (DG)

>Spectral volume (SV)/spectral difference (SD)

Flux reconstruction/Correction procedure via reconstructi(y

'TT

B Structured grid

B Unstructured grid
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> Extend reconstruction stencill

= Finite difference, compact o— o ' o | o | o
= Finite volume, ENO/WENO, ...
) > Add more internal degrees of freedom

= Finite element/spectral element, discontinuous Galerkin

= Spectral volume (SV)/spectral difference (SD), flux reconstruction
(FR) or correction procedure via reconstruction (CPR), ...

> Hybrid approaches I
=PnPm, rDG, hybrid DG/FV, ...
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»Simple formulation and »Boundary conditions

easy to understand for trivial with uniform
structured mesh accuracy

¢ »Complicated boundary >Non-uniform and
conditions: high-order unstructured grids
one-sided difference on = Reconstruction universal
uniform grids may be >Scalable
unstable

= Communication through
: »Not compact immediate neighbor
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S Review of the Godunov FV Method

Consider

au+af(u):0 | Vi_|
at ax 1-1/2 1+1/2

Integrate in V,

ou.
f ou , of x:—'Axi+fﬂdx
Lot ax) T at 4,

Ax +(f

at i+1/2 i—1/2)




: FR/CPR

»Developed by Huynh in 2007 and extended to simplex by
Wang & Gao in 20009, ...

>It 1S a differential formulation like “finite difference”

au(;t(x)ﬁfé@:o, U,(x)EP", F(x)EP
1l X

>The DOFs are solutions at a set of “solution points”




v CPR(cont)

>~Find a flux polynomial F,(x) one degree higher than the
solution, which minimizes

Hﬁi (x)-F (x)H

1 >The use the following to update the DOFs

dt dx Riemann Flux

4 , C «—Interior Flux P¥x)
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: CPR-DG

>1f the following equations are satisfied

JF:E (x)-F (x)]dx =0

*’ JIR00-F () xdx=0

»>The scheme Is DG!

Riemann Flux

4 . ﬁ/ Interior Flux
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1l High order mesh generation




v 1ne Need for Coarse, High-Order Meshes

»Internal degrees of freedom are added
such that meshes with ~100,000 elements
may be sufficient to achieve engineering
accuracy

»>|f boundaries are still represented by linear
facets, large errors are generated

(a) (b)

projected to curved
boundary
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low-order

high-order
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MESHCURVE

CAD Free, Low to High-Order Mesh Conversion

(released free of charge, just google meshCurve)




: The Mission

For high-order CFD simulations, we
need to

Fa

to this

without smoothing away
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S Main Features

> CGNS meshes : 3D, unstructured, multi-zone, multi-patch

> CAD-free operation

> Feature-curve preservation

> Easy-to-use, cross-platform graphical user interface interface

> Interactive 3D graphics

> Solid code base with minimal reliance on outside software libraries.

> Reasonably low memory footprint and fast operation on a desktop
computer.

> Avalilable for: Linux, MS Windows and Mac platforms




3 Demo Video
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SGS Models with the Burgers’ Equation




S Our Venture into LES

>Solve the filtered LES equations using
= FR/CPR scheme
= 3 stage SSP Runge-Kutta scheme for time marching

) >Implemented 3 SGS models

= Static Smagorinsky (SS) model
= Dynamic Smagorinsky (DS) model
= |LES (no model)

>Attempted several benchmark problems

1 = Flow over a Cylinder (ILES)
= |sotropic turbulence decay (SS, DS, ILES)
= Channel flow (SS, DS, ILES)
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>No good explanation!

>3S0 We decided to evaluate SGS models using the 1D
Burgers’ equation
! = High resolution DNS can be easily carried out
= True stress can be computed based on DNS data
= Both a priori and a posteriori studies can be performed

= Yes, the physics of 1D Burger’s equation is vastly simpler than the
Navier-Stokes equations, but if a SGS model has any chance for
3D Navier-Stokes equations, it must perform well for the 1D

1 Burger’s equation




3 Flltered Burgers' Equation

1D Burgers’ equation

du  du_ o°u
+U—=V—

ot ax  9x°
; Filter the equation with a box filter

aa+aaa_ 020 Ot
at %‘Vaxz dx

where
:
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q OGS Models Evaluated

>Static Smagorinsky model (SS)
>Dynamic Smagorinsky model (DS)
>Scale similarity model (SSM)

>Mixed model (MM) of SSM and DS
>Linear unified RANS-LES model (LUM)
»ILES (no model)




1 Numerical Method and Problem Setup

>Numerical methoc
= 34 order FR/CPR scheme
= \/iscous flux Is discretized with BR2
= Explicit SSP 3 stage Runge-Kutta scheme

>Problem setup
= Domain [-1, 1] with periodic boundary condition

= The initial solution contains 1,280 Fourier modes satisfying a
prescribed energy spectrum with random phases

| = The DNS needs 2,560 cells to resolve all the scales
’ = The filter width: A = 32 AXpys
= Various mesh resolutions for LES Ax /A =1, 1/2, 1/4, 1/8
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- Initial Condition
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- The DNS Results
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SGS Stress
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3 Lessons Learned about SGS Models

>~In both a priori and a posteriori tests with the 1D Burgers'’
equation

= SGS stresses generated by static, dynamic Smagorisky and LUM
models show no correlation with the true stress

= SSM (and Mixed model) consistently produces stresses with the
best correlation with the true stresses
>When the modeling error is dominant, SSM and MM perform
the best. When the truncation error is dominant, no model
shows any advantage. ILES is preferred
> For methods with dissipation, DO NOT use SGS models. For almost

all LES simulations, truncation errors are dominant (A = h), the best
choice is ILES.
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Example Applications




> Compare packing/unpacking vs direct data exchange
> P3 100 RK3 iterations on BlueWater; 125,000 Hex elements
> 3D Inviscid vortex propagation: 72% at 8192 cores (15 elements/core)

> 3D viscous Couette Flow: 68% at 16384 cores (8 elements/core)
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< Periodic Hill
= Benchmark problem adopted by the
International workshops for high-order CFD
methods
= Re =2,800 and 10,595

= Accurate prediction of separation and
reattachment points is a key challenge

* P3 FR/CPR+3 order SSP Runge-Kutta

=Fr 1 i==Fr7 =00 =
II '/ /I [l J‘ 1] 1 \l 3 \\ \\ LY
Y A A ! ! 1 \ v Ny
Y A A A I ! 1 1 L W W Y
I A | { i 1 A
— {1 1 OV VN
AN i 1 Y
fff 7 7 { \ )\ Vo
[ A AN i | RN
AN AT AN | | [N
VAN { Y \ (LY
TN Ji i 1 I\ RN
{7 I { 1 Y TV %
i Ji I I 1 \ 3 [
7 i ] ! 1 1 \ MY
16,384 P3 elements HHF———] ————
] See===. e




- Periodic Hill

|so-surface of Q colored by streamwise
velocity at Re,=10595 (hybrid)
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3 Periodic Hill (Re =2,900)

= Mean streamline
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3 Periodic Hill (Re =10,595)

= Mean streamline




3 Separation and Reattachment Points
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Velocity Profiles, Re =2,800
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10,595

3 Velocity Profiles, Re
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> Reynolds number: 584,000, Mach exit: 0.94
> No. of hexahedral elements: 511,744
>nDOFs/equ at p5 (6™ order): 110.5M

1!

> Boundary conditions
= |nlet: fix total p and total T and flow angle
= Wall: no split and iso-thermal
= Exit: fix p
= Periodic on the rest
> Some challenges
= There are supersonic regions and shock waves
= Heat transfer is difficult to predict

December 6, 2016
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- Simulation Process

> Start the simulation from p0 (15 order), and then restart at
higher orders. This is much more robust than directly starting
at high order

> Monitor the Cl and Cd histories on the main blades to
determine the start time for averaging

| > P-refinement studies used to assess the accuracy and mesh
and order independence
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v computational Schlierens
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FDL3DI — sixth order compact scheme

FR/CPR - sixth order
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v comparison of Heat Transfer
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S Summaries

>Outlined the challenges in LES

~Focused on several pacing items for LES
= High order methods
; = High-order mesh generation
= SGS models
»Presented several demonstration cases to show the
capability

>Future work Includes better wall models and efficient time
: Integration schemes for extreme scale computers
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